Insights into symbiotic nitrogen fixation in Medicago truncatula.
نویسندگان
چکیده
In silico analysis of the Medicago truncatula gene index release 8.0 at The Institute for Genomic Research identified approximately 530 tentative consensus sequences (TC) clustered from 2,700 expressed sequence tags (EST) derived solely from Sinorhizobium meliloti-inoculated root and nodule tissues. A great majority (76%) of these TC were derived exclusively from nitrogen-fixing and senescent nodules. A cDNA filter array was constructed using approximately 58% of the in silico-identified TC as well as cDNAs representing selected carbon and nitrogen metabolic pathways. The purpose of the array was to analyze transcript abundance in M. truncatula roots and nodules following inoculation by a wild-type S. meliloti strain, a mutant strain that forms ineffective nodules, an uninoculated root control, and roots following nitrate or ammonium treatments. In all, 81 cDNAs were upregulated in both effective and ineffective nodules, and 78% of these cDNAs represent in silico-identified TC. One group of in silico-identified TC encodes genes with similarity to putative plant disease resistance (R) genes of the nucleotide binding site-leucine-rich repeat type. Expression of R genes was enhanced in effective nodules, and transcripts also were detected in ineffective nodules at 14 days postinoculation (dpi). Homologous R gene sequences also have been identified in the Medicago genome. However, their functional importance in nodules remains to be established. Genes for enzymes involved in organic acid synthesis along with genes involved in nitrogen metabolism were shown to be coexpressed in nitrate-fed roots and effective nodules of M. truncatula.
منابع مشابه
Genetic dissection of symbiotic nitrogen fixation (SNF) in the model legume Medicago truncatula
متن کامل
Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula.
Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. Ho...
متن کاملComparative Analysis of the Symbiotic Efficiency of Medicago truncatula and Medicago sativa under Phosphorus Deficiency
Phosphorus (P)-deficiency is a major abiotic stress that limits legume growth in many types of soils. The relationship between Medicago and Sinorhizobium, is known to be affected by different environmental conditions. Recent reports have shown that, in combination with S. meliloti 2011, Medicago truncatula had a lower symbiotic efficiency than Medicago sativa. However, little is known about how...
متن کاملNodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis
The symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume-Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed. However, little is known about the physiological mechanisms behind the higher symbiotic eff...
متن کاملA Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2006